

Chapter 11
Feeding the World

Global Undernutrition

Nutritional Requirements

- Undernutrition- not consuming enough calories to be healthy.
- Malnourished- a persons diet lacks the correct balance of proteins, carbohydrates, vitamins, and minerals even though they get enough calories.
- Overnutrition- too many calories and improper foods that causes a person to become overweight.

Annual Meat Consumption

Global Grain Production, 1950-2006

Reasons for Undernutrition and Malnutrition

- Poverty
- Political and economic factors
- Agricultural resources being diverted to feed livestock and poultry rather than people

The Green Revolution

 New management techniques and mechanization as well as the triad of fertilization, irrigation, and improved crop varieties. This has increased food production dramatically.

Irrigation Problems

- Waterlogging- when the soil remains under water for prolonged periods which impairs root growth because the roots cannot get oxygen.
- Salinization- when the small amounts of salts in irrigation water become highly concentrated on the soil surface through evaporation.

Figure 11.6
Environmental Science
© 2012 W. H. Freeman and Company

Fertilizers

Organic fertilizers- organic matter from plants and animals.
 Typically made from animal manure that has been allowed to decompose.

 Inorganic fertilizers (synthetic)- fertilizers that are produced commercially. This is usually done by combusting natural gas, which allows nitrogen from the atmosphere to be fixed and captured in fertilizer.

Figure 11.7
Environmental Science

Monocropping

Growing a large amount of a single species of plant.

Figure 11.8

Environmental Science

© 2012 W. H. Freeman and Company

- Pesticide- a substance that kills or controls organisms that people consider pests.
- Insecticide- target insects
- Herbicides- target plants

- Broad-spectrum pesticides- designed to kill many different types of pests.
- Selective pesticides- designed to kill a narrower range of organisms.

- Persistent- pesticides that remain in the environment a long time.
- Nonpersistent- pesticide that breaks down relatively rapidly, usually in weeks to months.

- Bioaccumulation- some pesticides are found to build up over time in the fatty tissues of predators.
 - An example was DDT.
 - When an organism containing the pesticide is eaten, the chemical is transferred to the consumer.
 - This eventually leads to very high pesticide concentrations at high trophic levels.

- Resistance- pest populations may evolve resistance to a pesticide over time. These are said to be resistant.
- Pesticide treadmill- the cycle of pesticide development followed by pest resistance, followed by development of a new pesticide.

Benefits of Genetic Engineering

- Greater yield
- Greater food quality
- Reductions in pesticide use
- Reduction of world hunger by increased food production
- Increased profits

Concerns about Genetically Modified Organisms

- Safety for human consumption
- Effects on biodiversity
- Regulation of genetically modified organisms

Farming Methods

- Conventional agriculture- industrial agriculture where labor is reduced and machinery is used.
- Traditional farming- still used in the developing world where human labor is used and not machinery.
- Shifting agriculture- used in areas with nutrient poor soils. It involves planting an area for a few years until the land is depleted of nutrients and then moving to another area and repeating the process.
- Nomatic grazing- moving herds of animals to find productive feeding grounds.

Desertification

 Desertification- When soil is degraded by agriculture to the point at which they are not longer productive.

Sustainable Agriculture

- Sustainable agriculture- producing enough food to feed the world's population without destroying the land, polluting the environment, or reducing biodiversity.
 - Intercropping- two or more crop species are planted in the same field at the same time.
 - Crop rotation- rotating crops species from season to season.
 - Agroforestry- intercropping trees with vegetables.
 - Contour plowing- plowing and harvesting parallel to the land to prevent erosion.

Intercropping

Figure 11.13a
Environmental Science
© 2012 W. H. Freeman and Company

Contour plowing

Figure 11.13c
Environmental Science
© 2012 W. H. Freeman and Company

Agroforestry

Figure 11.13b

Environmental Science

© 2012 W. H. Freeman and Company

No-till Agriculture

 No-till agriculture- helps to stop soil degradation by leaving crop residues in the fields and not tilling the land after each harvest.

Figure 11.15

Environmental Science
© 2012 W. H. Freeman and Company

Integrated Pest Management

- Integrated pest management- using a variety of techniques designed to minimize pesticide inputs.
 - Crop rotation
 - Intercropping
 - Planting pest resistant crop varieties
 - Creating habitats for predators
 - Limited use of pesticides

(a) Pesticide use

(b) Harvest

Figure 11.17

Environmental Science
© 2012 W. H. Freeman and Company

Organic Agriculture

 Organic agriculture- production of crops without the use of synthetic pesticides or fertilizers.

High-Density Animal Farming

 CAFOs (concentrated animal feeding operations)- large structures where animals are being raised in high density numbers.

Figure 11.19
Environmental Science
© 2012 W. H. Freeman and Company

Harvesting of Fish and Shellfish

- Fishery- a commercially harvestable population of fish within a particular ecological region.
- Fishery collapse- the decline of a fish population by 90% or more.

Bycatch- unintentional catch of non-target species.

Aquaculture

 Aquaculture- the farming of aquatic organisms such as fish, shellfish, and seaweeds.

Figure 11.23
Environmental Science
© 2012 W. H. Freeman and Company